Este es uno de los algoritmos más antiguos, sencillos y equitativos en el reparto de la CPU entre los procesos, muy válido para entornos de tiempo compartido.
Cada proceso tiene asignado un intervalo de tiempo de ejecución, llamado cuantum o cuanto. Si el proceso agota su cuantum de tiempo, se elige a otro proceso para ocupar la CPU. Si el proceso se bloquea o termina antes de agotar su cuantum también se alterna el uso de la CPU.
El round robin es muy fácil de implementar. Todo lo que necesita el planificador es mantener una lista de los procesos listos, como se muestra en la figura 6.2.
En esta figura en a) el proceso P7 ocupa la CPU. En b) P7 se bloquea pasando P2 a ocupar la CPU. En c) P2 agota su cuantum con lo que pasa al final de la lista y P4 ocupa la CPU. La figura 4 representa un ejemplo más largo de la ocupación de la CPU utilizando el algoritmo round robin.
Sistemas Operativos
lunes, 25 de octubre de 2010
Planificación de Plazo Fijo
En la planificación de plazo fijo se programan ciertos trabajos para terminarse en un tiempo específico o plazo fijo. Estas tareas pueden tener un gran valor si se entregan a tiempo, y carecer de él si se entregan después del plazo.
Esta planificación es compleja por varios motivos:
Esta planificación es compleja por varios motivos:
- El usuario debe informar por adelantado de las necesidades precisas de recursos del proceso.
- El sistema debe ejecutar el proceso en un plazo fijo sin degradar demasiado el servicio a los otros usuarios y debe planificar cuidadosamente sus necesidades de recursos dentro del plazo. Esto puede ser difícil por la llegada de nuevos procesos que impongan demandas imprevistas al sistema.
- Si hay muchas tareas a plazo fijo activas al mismo tiempo, la planificación puede ser tan compleja que se necesiten métodos de optimización avanzados para cumplir los plazos.
- La administración intensiva de recursos requerida por la planificación de plazo fijo puede producir un gasto extra substancial.
Pregunta Personal del Profe Casimiro
¿Qué algoritmo de planificación será más conveniente para optimizar el rendimiento
de la UCP en un sistema que sólo tiene procesos en los cuales no hay entrada/salida?
de la UCP en un sistema que sólo tiene procesos en los cuales no hay entrada/salida?
Planificación por el Comportamiento
Se pretende garantizar al usuario cierta prestación del sistema y tratar de cumplirla.
Si en un sistema tenemos 'n' usuarios lo normal será garantizar a cada uno de ellos al menos 1/n de la potencia del procesador. Para ello necesitamos del tiempo consumido por el procesador y el tiempo que lleva el proceso en el sistema.
La cantidad de procesador que tiene derecho a consumir el proceso será el cociente entre el tiempo que lleva en el sistema entre el número de procesos que hay en el sistema. A esa cantidad se le puede asociar una prioridad que vendrá dada como el cociente entre tiempo de procesador que ha consumido y el tiempo que se le prometió (el tiempo que tiene derecho a consumir). De tal modo que si esa proporción es de 0'5 significa que tan sólo ha consumido la mitad del tiempo prometido pero si es de 2 quiere decir que ha consumido más de lo debido, justamente el doble.
En sistemas de tiempo real se puede adoptar una variante de este algoritmo en el que se otorgue mayor prioridad al proceso cuyo riesgo de no cumplir el plazo sea mayor.
Planificación a la Tasa de Respuesta más Alta
Brinch Hansen desarrolló la estrategia de prioridad a la tasa de respueta más alta (HRN, highest-response-ratio-next) que corrige algunas deficiencias de SJF, particularmente el retraso excesivo de trabajos largos y el favoritismo excesivo para los trabajos cortos. HRN es un disciplina de planificación no apropiativa en la cual la prioridad de cada proceso no sólo se calcula en función del tiempo de servicio, sino también del tiempo que ha esperado para ser atendido. Cuando un trabajo obtiene el procesador, se ejecuta hasta terminar. Las prioridades dinámicas en HRN se calculan de acuerdo con la siguiente expresión:
- prioridad = (tiempo de espera + tiempo de servicio) / tiempo de servicio
Como el tiempo de servicio aparece en el denominador, los procesos cortos tendrán preferencia. Pero como el tiempo de espera aparece en el numerador, los procesos largos que han esperado también tendrán un trato favorable. Obsérvese que la suma tiempo de espera + tiempo de servicio es el tiempo de respuesta del sistema para el proceso si éste se inicia de inmediato.
Planificación por Prioridad al Tiempo Restante más Corto (SRTF, Short Remaining Time First).
Es similar al anterior SJF con la diferencia de que si un nuevo proceso pasa a listo se activa el dispatcher para ver si es más corto que lo que queda por ejecutar del proceso en ejecución. Si es así el proceso en ejecución pasa a listo y su tiempo de estimación se decrementa con el tiempo que ha estado ejecutándose.
En la figura 6.5 tenemos un ejemplo de funcionamiento del algoritmo en el que se observa cómo se penalizan las ráfagas largas (como en SJF). Un punto débil de este algoritmo se evidencia cuando una ráfaga muy corta suspende a otra un poco más larga, siendo más largo la ejecución en este orden al ser preciso un cambio adicional de proceso y la ejecución del código del planificador.
Planificación por Prioridad al más corto (SJF, Short Job First).
Al igual que en el algoritmo FIFO las ráfagas se ejecutan sin interrupción, por tanto, sólo es útil para entornos batch. Su característica es que cuando se activa el planificador, éste elige la ráfaga de menor duración. Es decir, introduce una noción de prioridad entre ráfagas.
La ventaja que presenta este algoritmo sobre el algoritmo FIFO es que minimiza el tiempo de finalización promedio, como puede verse en el siguiente ejemplo:
Ejemplo:
Supongamos que en un momento dado existen tres ráfagas listos R1, R2 y R3, sus tiempos de ejecución respectivos son 24, 3 y 3 ms. El proceso al que pertenece la ráfaga R1 es la que lleva más tiempo ejecutable, seguido del proceso al que pertenece R2 y del de R3. Veamos el tiempo medio de finalización (F) de las ráfagas aplicando FIFO y SJF:
FIFO F = (24 + 27 + 30) / 3 = 27 ms.
SJF F = (3 + 6 + 30) / 3 = 13 ms.
Se puede demostrar que este algoritmo es el óptimo. Para ello, consideremos el caso de cuatro ráfagas, con tiempos de ejecución de a, b, c y d. La primera ráfaga termina en el tiempo a, la segunda termina en el tiempo a+b, etc. El tiempo promedio de finalización es (4a+3b+2c+d)/4. Es evidente que a contribuye más al promedio que los demás tiempos, por lo que debe ser la ráfaga más corta, b la siguiente, y así sucesivamente. El mismo razonamiento se aplica a un número arbitrario de ráfagas.
No obstante, este algoritmo sólo es óptimo cuando se tienen simultáneamente todas las ráfagas. Como contraejemplo, considérense cinco ráfagas desde A hasta E, con tiempo se ejecución de 2, 4, 1, 1 y 1 respectivamente. Sus tiempos de llegada son 0, 0, 3, 3 y 3. Primero se dispone de A y B, puesto que las demás ráfagas no han llegado aún. Con el algoritmo SJF las ejecutaríamos en orden A, B, C, D, y E con un tiempo de finalización promedio de 4.6. Sin embargo, al ejecutarlas en orden B, C, D, E y A se tiene un promedio de finalización de 4.4.
Suscribirse a:
Comentarios (Atom)
